An End-to-End Project on Time Series Analysis and Forecasting with Python
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. Time series are widely used for non-stationary data, like economic, weather, stock price, and retail sales in this post. We will demonstrate different approaches for forecasting retail sales time series. Let’s get started! The Data We are using Superstore sales data that can be downloaded from here. import warnings import itertools import numpy as np import matplotlib.pyplot as plt warnings.filterwarnings("ignore") plt.style.use('fivethirtyeight') import pandas as pd import statsmodels.api as sm import matplotlib matplotlib.rcParams['axes.labelsize'] = 14 matplotlib.rcParams['xtick.labelsize'] = 12 matplotlib.rcParams['ytick.labelsize'] = 12 matplotlib.rcParams['text.color...